
Java Best Practices And Design Patterns

Course: 00005

Filter: Beginner

Duration: 4 days

Category:: Java

Price: 3895,00 €

About Course

Solve real-world software development problems, and deliver responsive applications that

are fast and reliable. In this training course, you learn how to leverage Java best practices,

avoid pitfalls, perform industry-standard software development techniques, use design

patterns to implement proven solutions to reoccurring problems, and apply idioms and

patterns to improve your Java code.

What you'll learn

Employ best practices to build reliable and scalable Java applications

Effectively apply test-driven development to enhance program maintainability

Solve architectural problems with proven design patterns

Employ advanced Java APIs for multi-threaded programming

Pre-requisites

Knowledge at the level of Java Programming Introduction

Three to six months of Java programming experience

Understand Java classes, the inheritance model, polymorphism, and encapsulation

Use fundamental standard edition Java APIs

Apply object-oriented analysis and design, including defining classes and creating

objects

Curriculum

Page 1



Module 1: Effective Programming in Java

Clarifying the goals of best practices

Identifying the key characteristics of high-quality software

Organizing classes, packages and subsystems into layers

Designing to the principles of SOLID

Module 2: Exploiting a testing framework

Composing and maintaining JUnit tests

Taking advantage of advanced JUnit features

Testing in the presence of exceptions

Module 3: Monitoring software health using logging libraries

Configuring logging with log4j and SLF4J

Minimizing the impact of logging on performance

Module 4: Creating matchers and mock objects

Writing custom Ham crest matchers

Testing with fake objects and mocks

Module 5: Employing common design patterns

Observer

Iterator

Template method

Strategy

State

Data Accessor Object

Data Transfer Object

Composite

Service Locator

Proxy

Factory

Page 2



Module 6: Refactoring legacy code

Identifying reasons to change software

Clarifying the mechanics of change

Writing tests for legacy classes and methods

Module 7: Improving type safety with generics and enum types

Creating generic classes and methods

Navigating generic class hierarchies

Implementing enum types for fixed sets of constants

Module 8: Adding metadata by writing annotations

Leveraging the built-in and custom annotations

Annotating with meta-annotations

Module 9: Modifying runtime behavior with reflection

Retrieving class and method data dynamically

Flagging methods with naming conventions

Adding information to code with annotations

Assessing disadvantages of reflection

Module 10: Measuring and improving performance

Assessing response time

Conducting load and stress tests

Page 3


